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Motivating the need to relax Subjective Expected Utility [SEU] theory in the 

direction of Indeterminate Probabilities. 

The case of cooperative Bayesian decision making. 

 

Consider two SEU Bayesian decision makers, Dick and Jane, who wish to 

form a cooperative partnership that will make decisions, constrained by the 

following two principles governing coherence and compromise. 

 

• The partnership, a group of two agents, itself a deciding agent, must 

satisfy the theory of Subjective Expected Utility maximization  

The Group has a probability and a utility (PG, UG).   

The Group maximizes expected utility with respect to this pair. 

 

• (Simple) Pareto coordination – if each of Dick and Jane strictly prefers 

one option o1 to a second o2, then so too does the partnership. 

 

What are the candidate Bayesian compromises between Dick and Jane that 

may serve as the partnership’s SEU preferences? 
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Background – ARROW'S “Impossibility” Theorem (1950)  
A Difficulty in the Concept of Social Welfare, Kenneth J. Arrow J. Political Economy, Vol. 58: 328-346. 

 

Consider a  (finite)  set  of  m-many  SOCIAL ACTS    A  =  { A
1
, . . ., A

m
 }, and  

 

n-many INDIVIDUAL PREFERENCES over these social acts {  <
1
,  . . . , <

n
 }. 

 

A PREFERENCE, < , is a binary weak ordering (transitive and complete) of the set A. 

 

  

Arrow’s Theorem:  

 

There does not exist a rule for creating a GROUP PREFERENCE, <
G

,  

that satisfies the following 4 conditions: 
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(C-1)   The rule applies with ARBITRARY sets of ACTS and PREFERENCES. 

 

 

(C-2)   The rule obeys the (WEAK) PARETO AXIOM: 

 

If A
1
 <

j
 A

2
  (for each j),  then A

1
 <

G
 A

2
. 

 

That is, when each person (weakly) prefers A
2
 to A

1
, the group does too. 

 

 

(C-3)  A DICTATOR is not permitted. 

 

 

(C-4)  The GROUP'S preference relation, <
G

, over a particular subset A' of social 

acts, 

 e.g.,  <
G

  applied to the odd-numbered social acts, 

depends solely on the INDIVIDUALS’ PREFERENCES, <
j
, for the acts in A'. 

 

Condition (C-4) is also called,  

INDEPENDENCE  OF  IRRELEVANT  ALTERNATIVES. 
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Possibility/Impossibility Results for Cooperative SEU compromises. 

What are the candidate Bayesian compromises between Dick and Jane that 

may serve as the partnership’s SEU preferences subject to Pareto?  

Aside: We use the framework of Anscombe-Aumann horse lotteries, where 

there are no moral hazards and utility is state-independent. 

1. If Dick and Jane share a common cardinal utility over outcomes, the 

candidate compromises for the group’s binary preferences are given by 

an average of their two personal probabilities, and the common utility.  

UG = U1 = U2   and  PG = P1 + (1- )P2  (0    1)  (Harsanyi) 

2. If Dick and Jane share a common personal probability over the states, 

the candidate compromises for the group’s binary preferences are given 

by an average of their two cardinal utilities, and the common 

probability. (Harsanyi, many others too.)  

PG = P1 = P2 and UG = U1 + (1- )U2 (0    1).  
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3. If Dick and Jane have any difference in their personal probability and 

do not share the same cardinal utility over rewards there are only 

autocratic solutions.  (SSK – 1989, for the basic result.) 

One of them makes all the decisions for the partnership!  

PG = P1  & UG = U1     or     PG = P2  & UG = U2. 

 

Aside:  The situation with more than two partners is complicated.  Even with 

acts defined on a binary partition, with three Bayesian agents (so that one must 

be a linear combination of the other two) there can be cases with only autocratic 

Pareto solutions.  (Jay Goodman, Ph.D. thesis, 1988.) 

• In short, marriage counseling is not as simple as the directive to enlarge the 

partnership by having children!
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Example 1:  A Heuristic Illustration of the Problem and a Proof 

Assume probabilities are act/state independent – no moral hazards. 

Assume that utilities are state-independent – problems of Small Worlds. 

Suppose Dick and Jane have different beliefs, P1  P2.    

  Let P1(E) = .1 and P2(E) = .3 for some event E.  

Also, suppose they have different values,  U1  U2.
 
   

Assume that each prefers reward r* to r
*
, though they differ in their 

valuation of a third reward r.  

U1(r) = .1 & U2(r) = .4, while U1(r
*
) = U2(r

*
) = 0  &  U1(r*) = U2(r*) = 1.  

Thus, Dick and Jane agree that  

   .1  <  Pk(E)  <  .3        (k = 1, 2).     

And they agree that 

   .1  <  Uk(r)  <  .4        (k = 1, 2). 
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The (weak) Pareto condition results in the following: 

• A2   <G  A1  <G  A3   fixing lower and upper probabilities for E. 

• A2   <G  A4  <G  A5            fixing lower and upper utilities for r. 

These induce common strict preferences among gambles, whose 

implications for coherent extensions of <G  are pictured in Figure 1.  
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Figure 1 
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However, also Dick and Jane share a common preference among pairs of 

acts of the following sort: 

 

 

 

 

 

 

 

 

 

 

 

 

The (weak) Pareto condition also fixes these group preferences 

• A6   <G  A7     for   0 <  < 0.015, 

which has the following geometric interpretation.  
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If we superimpose the two figures, we obtain  

Figure 3  
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Figure 3 shows that the set of coherent extensions of the partial order <G is  

disconnected .  

The set of coherent extensions is not convex. 

 

 

A pseudo-corollary for academic administrators: 

 

Stop meetings as soon as there is unanimity  

on what needs to be done! 

 

  

Do not allow the faculty to seek a shared rationale for unanimous 

decisions. 

 

Often enough they will agree on what to do; but almost surely they 

will not agree on why it should be done! 
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Contrasts between this result and Arrow’s “Impossiblity” for 

cooperative decision making. 

1. Arrow’s result permits individuals and society to have any weak-

order preference.  However, we restrict all weak preference orders 

to Bayesian SEU rankings. 

2. Arrow’s condition C-4 (IIA) precludes interpersonal cardinal utility 

comparisons and without C-4 there are “possibility” results under 

conditions C-1, C-2, and C-3.  However, we do not impose C-4. 

3. Arrow’s “Impossibility” reads,  

“For each consensus rule there will be a preference profile where …” 

However, the result for the Bayesian Impossibility reads, 

“For each pair of Bayesians with different values and beliefs there is 

no Bayesian consensus of SEU preferences that respects Pareto.” 
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Combining Expert Bayesian Opinions.  Can it be done? 

 

Having seen that it is impossible to create fully Bayesian (non-autocratic) 

compromises that involve both beliefs and values, let us reconsider the simpler 

problem of merging different degrees of belief.  The challenge is to determine 

whether there are defensible rules for combining a set of n-many “expert” 

probability distributions into one common probability distribution. 

 

We suppose that each of our n-many experts has an opinion about some common 

domain of interest, represented by the partition into relevant states: 

 = { 1, …., k}. 

Experti’s opinion is probability distribution Pi = <pi1, …, pik> over , i =1, …, n.    

• Can we combine these n-many probabilities, Pi, into a single probability PG that 

reflects the group’s combined wisdom? 
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Linear Pooling:   

Assign each expert a non-negative weight wi  0 to reflect her/his relative 

expertise in the group, and standardize these so that i wi = 1 

Form PG  =  i wiPi, the wi-weighted average of their separate opinions. 

• PG is called a Linear Pool of the expert opinions. 

• The Linear Pool puts PG inside the hull (= closed, convex set) of the n-many 

points Pi (i = 1, …, n). 
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What are some of the nice features of a Linear Pool? 

• Preservation of unanimity of (unconditional) probabilistic opinions 

If c1     Pi(E)   c2 (i = 1, …, n) then c1    PG (E)  c2. 

Suppose there is a common utility U for outcomes across the group,  

that is, suppose the group is a Team.  

 

• If each expert judges that Act1 is better than Act2 by the standards of SEU,  

then so too the Team will make the same Pareto judgment – using the shared utility 

U and pooled opinion PG. 

 

• The Linear Pool is computationally convenient in the following sense of being a 

local computation.   

Once the wi (i = 1, …, n) are fixed  PG(E) depends solely on the n-values Pi(E). 

 In other words, PG(E) does not depend upon how the n-many experts divide up 

their probabilities on Ec. 

• But is there a problem with the Linear Pool?  What more might we want of a 

Bayesian consensus than is required by the Pareto condition for pairwise 

comparisons? 
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Learning and Pooling. 

Let us use conditional probability as the rule for updating new information.   

• Pi(•  | F) is the revised opinion for Pi when new information F is added. 

(1) Consider allowing the experts all to learn the same new information F before 

pooling their opinions with weights wi. 

So, by this method of first updating and then pooling we obtain     

P1
G(•  | F) =  i wiPi(•  | F). 

(2) However, we might first pool the expert opinions and then update PG with the 

same information F, to yield P2
G(•  | F) =  PG(•   F) ÷  PG(F) 

         =  i wiPi(•   F) ÷   i wiPi(F).  

Alas, generally,   P1
G(•  | F)    P2

G(•  | F)   !! 

 

The Linear Pool is not “Externally Bayesian”!   

 

 

Consider the 3-dimensional simplex of probabilities on two events. 
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We see that, generally, linear pooling two probability distributions that make the 

events E and F independent will make them dependent!  
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This method of pooling creates some strange decisions for the group.   

 

If n = 2 and both experts think that E and F are independent events, then 

each will refuse to pay anything to learn about F before betting on E. 

However, if a linear opinion pool is formed first, that opinion may make E 

and F dependent events, and under the pooled-opinion, there will be value 

in first learning F before wagering on E. 

 

Example 2 (sketch): Consider two doctors who are unsure both about your allergic 

state and about the weather in China, but who agree these are independent events.  

Do you mind if, instead of checking your medical history for information about your 

drug allergies, instead they spend the insurance money learning about the weather 

in China and using that information to decide on your treatment? 

 

Here is the normal form version of that sequential problem. 
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Example 2: Consider a decision problem among three options – three treatment 

plans {T1, T2, T3} defined over 4 states  = { 1, 2, 3, 4} with determinate utility 

outcomes given in the following table.  That is, the numbers in the table are the 

utility outcomes for the options (rows) in the respective states (columns).  
 

      1     2     3    4 

T1  0.00   0.00   1.00  1.00 

T2  1.00   1.00   0.00  0.00  

T3  0.99               -0.01             -0.01  0.99 
 

Consider the convex set of probabilities be generated by two extreme points, 

distributions P1 and P2.  Distribution P3 is the .50-.50 (convex) mixture of P1 and P2. 

     1     2     3    4 

P1  0.08   0.32   0.12  0.48 

P2  0.48   0.12   0.32  0.08  

P3  0.28   0.22   0.22  0.28 
 

• Note well that (for i = 1, 2, 3) under probability Pi, only option Ti is  

Bayes-admissible from the option set of {T1, T2, T3}.   
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Now, interpret these states as the cross product of two binary partitions:  

• a binary medical event – A (patient allegric), A
c
 (patient not-allergic),  

• a binary meteorological partition – S (sunny) and S
c
 (cloudy).    

Specifically:  1 = A&S   2 = A&S
c
   3 = A

c
&S   4 = A

c
&S

c
 

  

• Under P1, the two partitions are independent events with P1(A) = .4 and P1(S) = .2.        

• Likewise, under P2, the events are independent, P2(A) = .6 and P2(S) = .8.  

• But under linear pooling P3, A and S are positively correlated:  

.56 = P3(A | S )  >  P3(A) = .5,               

as happens with each distribution that is a non-trivial mixture of P1 and P2. 

 

The three options have the following interpretations:  

T1 and T2 are ordinary medical options, with outcomes that depend solely upon 

the patient’s allergic state.   

T3 is an option that makes the allocation of medical treatment a function of the 

meteorological state, with a “fee” of 0.01 utile assessed for that input.   

T3 is the option “T1 if cloudy and T2 if sunny, while paying a fee of 0.01.” 
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Suppose P1 represents the opinion of medical expert1, and P2 represents the 

opinion of medical expert2.   

Without linear pooling, T3 is inadmissible for each expert.   

This captures the shared agreement between the two medical experts 

that T3 is unacceptable from the choice of three {T1, T2, T3}, and it 

captures the pre-systematic understanding that under T3 you pay to use 

medically irrelevant inputs about the weather in order to determine the 

medical treatment.   

However, with linear pooling of the pair P1 and P2, then T3 (or a variant of 

T3) becomes uniquely admissible for the group.  

• There is no violation of the (binary) Pareto condition under the group 

opinion formed by the linear pool since the experts disagree about 

which option, T1 or T2, is better than T3, though they agree that T3 is 

not best.   
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Aside:      Consensus is not bargaining! 

 

From a bargaining point-of-view, it makes good sense for each expert to 

accept option T3.  

 

Option T3 allows each party in a bargaining problem to think that, with 

probability .8, his/her medical view will decide the treatment allocation 

for the patient. 
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Externally Bayesian Pooling Rules. 

 

There is a family of pooling rules that is invariant over the order of pooling and 

updating by conditioning.  These are called Externally Bayesian Pooling rule. 

 

It is a Logarithmic Pool:    PG     i Pi
wi 

 

It is a linear pool in the logarithms of the expert opinions. 

 

 

• What is problematic about this pooling rule? 

 

Example 3:  Using three states and two experts.   

 

 = { 1, 2, 3}   P1 = <.3, .5, .2>,  P2 = <.3, .2, .5>, and  w1 = w2.  

 

Exercise:  Show that using the logarithmic pooling rule,  PG( 1)  .3, which is a 

violation of unanimity for pooling of the unconditional probabilities. 
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Summary 

1. We require that a cooperative partnership obey the Pareto rule: 

Preserve all strict preferences about which there is unanimity. 

But there are no non-autocratic Bayesian compromises between    

two Bayesian agents who differ in their values (utilities) and in their 

beliefs (probabilities). 

Aside: We use the framework of Anscombe-Aumann horse lotteries, where 

there are no moral hazards and utility is state-independent. 

 

2. Even the more modest goal of finding consensus solely with respect 

to a set of probabilities is frustrated.  

2.1 The Linear Pool is not Externally Bayesian and does not 

always preserve unanimous judgments about the value of 

information in sequential decisions. 

2.2 The Logarithmic Pool is Externally Bayesian, but does not 

always preserve unanimity in unconditional probabilities. 

Q: How to relax the SEU theory in order to avoid such results? 


